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Abstract. A theorem of Furuta and Fintushel-Stern provides a criterion for a
collection of Seifert fiberd homology spheres to be independent in the homology
cobordism group of oriented homology 3-spheres. In this article we use these
results and some 4-dimensional constructions to produce infinite families of
positive torus knots whose iterated Whitehead doubles are independent in the
smooth concordance group.

1. Introduction

A smooth knot is a smooth embedding of the circle S1 into the 3-sphere S3,
and as a consequence of the (unpublished) worked of Thurston, every knot is either
hyperbolic, a torus, or a satellite knot [28]. Hyperbolic knots are those whose com-
plement admits a hyperbolic structure, torus knots are those that lie on the surface
of an unknotted torus in S3 and are specified by a pair of coprime integers p and q,
and finally, satellite knots are those whose complement contains an incompressible,
non-boundary-parallel torus. Moreover, satellite knots are constructed from two
given knots, P and K, in the following way. Let P � J be a link in S3 with J an
unknot so that P lies in the solid torus V = S3 \ N(J). The satellite knot with
pattern P � J and companion K is denoted by P (K) and is obtained as the image
of P under the embedding of V in S3 that knots V as a tubular neighborhood of
K, using the 0-framing of K.

The set of isotopy classes of knots is a semigroup with connect-sum as its binary
operation [20, Chapter 1, Section 5]. To obtain a group structure topologists con-
sider another equivalence relation on the set of knots, concordance. Two smooth
knots K0,K1 ⊂ S3 are smoothly concordant if there exists a smoothly and properly
embedded annulus A into the cylinder I×S3 that restricts to the given knots at each
end. However, if the embedding of A into I×S3 is locally flat and proper, the knots
K0 and K1 are said to be topologically concordant. These two different approaches
give rise to the two related theories of smooth and topological concordance, and
both induce an abelian group structure on the set of knots with connected sum as
the operation. Studying the relationship between smooth and topological concor-
dance is an area of active research in knot theory especially because the difference
between smooth and topologically slice knots is related to subtle differences in the
set of differentiable structures on 4–manifolds. One approach to this problem is to
understand the group structure of the “forgetful homomorphism” C → CTOP. The
1980’s saw the birth of tremendously important results in that direction: those of
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Freedman [10–12] and Donaldson [4–6]. These results allowed topologists to actu-
ally understand just how vastly different C and CTOP are. Indeed, on the one hand,
Freedman’s theorem implies that knots with Alexander polynomial 1 are topologi-
cally slice, and on the other, Donaldson’s theorem can be used to show that some
knots with Alexander polynomial 1 are not smoothly slice. As an example, if the
link Dr � J is the r-th iterated Whitehead link, Dr(K) is called the (untwisted
positively clasped) r-th iterated Whitehead double of K. Since the pattern Dr is
an unknot in S3 and is trivial in H1(V ;Z), the satellite Dr(K) has trivial Alexan-
der polynomial and is thus topologically slice. The main result of this article is the
following:

Theorem. If a sequence {(pi, qi)}i of pairs of relatively prime and positive integers

satisfies that piqi (4piqi − 1) < pi+1qi+1 (pi+1qi+1 − 1), then no non-trivial linear

combination of elements of the set {Dri (Tpi,qi)}
∞

i=1
is smoothly slice.

Part of the motivation to study independence of Whitehead doubles comes from
the following problem in Kirby’s list [7].

Problem 1 (1.38 in [7]). The untwisted double of a knot is slice if and only if the
knot is slice.

It was Akbulut [1] [2, Exercise 11.4, p. 143] who first used Donaldson’s theorem
to prove that D(T2,3), the Whitehead double of the right handed trefoil knot, is
not smoothly slice. Akbulut’s technique was extended by Cochran-Gompf [3] to
show that Whitehead doubles of positive torus knots have infinite order. The
introduction of Seiberg-Witten invariants and their relationship with the invariant
of Thurston-Benequin allowed Rudolph [24, 25] to show that iterated doubles of
strongly quasipositive knots (of which torus knots are an example) are not smoothly
slice. Next, the work of Ozsváth and Szabo in Heegaard Floer was used by Hedden
[15] to generalize the result of Rudolph, and by Park [22] to show that D(T2,2m+1)
and D2(T2,2m+1) generate a Z

2-summand of C. Finally, the work of Furuta [13] and
Fintushel-Stern [9] on the theory of instantons and Chern-Simons invariants was
used first by Endo [8] to show that the collection of pretzel knots P = {K(p, q, r) |
(p, q, r) odd integers satisfying pq + qr + rp = −1 and p, q, r �= ±1} generates an
infinite rank subgroup of the kernel of C → CTOP, and later by Hedden-Kirk [16]
to show that certain families of Whitehead doubles of positive torus knots generate
a subgroup of C of maximal infinite rank. Their work was generalized to other
Whitehead-like patterns in [23], and the present work can be regarded as its sequel.

As usual with concordance, the methods involve the topology of 3– and 4–
manifolds. If a knot K is slice, then on one hand, the 2-fold cover of S3 branched
over K bounds a smooth 4–manifold with the same Z/2 homology as the 4–ball,
and on the other, surgery on S3 along K bounds a 4–manifold with an embed-
ded 2-sphere. Then, obstructions to these 3–manifolds from bounding smooth 4–
manifolds with the prescribed topology provide obstructions to the knots used in
their constructions from being slice. In the present article the obstruction to the
sliceness of sums of iterated doubles will come from the study of the moduli space
of ASD connections on a 4–manifold with cylindrical ends modeled over the 2-fold
covers of S3 branched over the doubles.

Outline. To establish the result we will translate the question of concordance of
knots into a question of homology cobordism of their 2-fold covers, and so Section
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2 focuses on a description of the topology of the covers of iterated Whitehead
doubles. The basics of the results of Furuta [13] and Fintushel-Stern [9] regarding
independence in Θ3

Z/2 will be briefly presented in Section 3. However, this result

requires a particular geometric structure on 3–manifolds which 2-fold covers over
iterated doubles lack. This issue can be sidestepped via cobordisms, and so Section 4
describes constructions of definite cobordisms from our 3–manifolds to 3–manifolds
with the right geometry. With all the ingredients at hand, Section 5 presents the
final proof.

2. Satellites and their cover

The classification of knots up to concordance, and in particular the study of
sliceness, is a problem that involves both 3– and 4–manifold topology. Double
branched covers, for example, provide a connection between problems in knot theory
and other questions in low-dimensional topology. To be more specific, obstructions
to sliceness can be found using homology cobordism, a 3–dimensional analogue
to concordance. Call two oriented Z/2–homology spheres Σ0 and Σ1 homology
cobordant if there is an oriented smooth 4–manifold C with oriented boundary
−Σ0 � Σ1 and such that H∗(C;Z/2) = H∗(I × S3;Z/2). In this case, we call C
a Z/2-homology cobordism from Σ0 to Σ1. The set of Z/2-homology cobordism
classes of Z/2–homology spheres forms an abelian group denoted by Θ3

Z/2 and with

connected sum as the group operation. To establish the relationship between Z/2-
homology cobordism and concordance, for a knot K in S3, denote by Σ(K) the
2-fold cover of S3 branched over K. Notice that if two knots K0 and K1 are
concordant via an annulus A, then the double cover of the cylinder I×S3 branched
along A is a Z/2-homology cobordism between the 3–manifolds Σ(K0) and Σ(K1)
and so there is a well defined assignment K → Σ(K) from the smooth concordance
group C into Θ3

Z/2. Moreover, since the separating S2 that appears in a connected

sum K0#K1 lifts to a separating sphere of the 2-fold cover of the sum, this map is
a group homomorphism. Thus, the question of the existence (or lack thereof) of a
slicing disk for a knot K translates into the question of the existence of a 4–manifold
with the same Z/2-homology groups as the 4–ball and with boundary Σ(K). This
section details a special and particularly useful decomposition of branched covers
of satellites.

First, recall that the untwisted satellite knot P (K) with pattern P and compan-
ion K is obtained as the image of P under the embedding of an unknotted solid
torus V in S3 containing P that knots V as a tubular neighborhood of K, using
the 0-framing of K. For n any integer, an n-twisted satellite is obtained using the
n-framing of K in the identification. Whitehead doubles are an important example
of untwisted satellites and are obtained by using the Whitehead link as the pattern
of the satellite operation. Similar examples arise by considering Whitehead dou-
bles of other Whitehead doubles. These examples are called iterated Whitehead
doubles. The images to the right of Figure 2 show the patterns of the first three
iterations of this satellite operation.

Now, regarding general covers of S3 branched over satellites, denote by Σq(P (K))
the q-fold branched cover of S3 branched over P (K). If J is a parallel copy of
a meridional curve for the solid torus V so that V can be identified with S3 \
N(J), then J has l lifts into Σq(P ), where l = gcd(q, lk(J, P )). It follows that
Σq(P (K)), the q-fold branched cover of S3 branched over P (K), is formed from
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→

Figure 1. The cover Σ
(
D1

)
→ S3, the knot J and its longitude,

as well as their lifts.

Σq(P (U)) (where U is the unknot) by removing neighborhoods of the lifts of J and
replacing each with the q/l-cyclic cover of the complement of K. See [18] and [27]
for the details. For Whitehead doubles and q = 2 specifically, we have the following
decomposition; the details can be found in [16] or [23]:

(1) Σ (D(K)) = S3 \N (T2,4) ∪
φ̃
2E(K).

Here E(K) denotes the knot exterior S3 \ N(K), and the gluing map φ̃ identifies
each copy of the meridian µK of the knot K to the curve (−2, 1) in each component
of ∂N (T2,4). See Figure 1 for a visualization of this cover. This description is
obtained by identifying the covering space of S3\N(D) with S3\N(T2,4), where T2,4

is the (unoriented) two component torus link determined by (2, 4). The following
proposition relies on this identification to describe a similar decomposition for the
double covers Σ (Dr(K)) for r > 1.

Proposition 1. Given a knot K ⊆ S3 and an integer r ≥ 1, let Dr(K) be the r-th
iterated Whitehead double of K. The 2-fold cover Σ (Dr(K)) of S3 branched over

Dr(K) has a decomposition

Σ (Dr(K)) = S3 \N
(
Dr−1

−2 (T2,4)
)
∪
φ̃
2E(K),

where 2E(K) denotes two disjoint copies of the knot exterior S3 \ N(K) and

Dr−1
−2 (T2,4) denotes the iterated double of the link T2,4 twisted by −2. Addition-

ally, the gluing map φ̃ identifies each copy of the meridian µK of the knot K with

the longitude of one of the components of Dr−1
−2 (T2,4).

Proof. Denote by Σ(V,Dr) the 2-fold cover of the solid torus V = S3 \ N(J)
branched over the pattern Dr. Results from [18] and [27] show that the 2-fold cover
of S3 branched over Dr(K) is completely determined by Σ(V,Dr), the homology
class of the two lifts of µV = λJ to Σ(V,Dr), and the knot exterior S3\N(K). Since
the iterated Whitehead link Dr � J is symmetric, Σ(V,Dr) is diffeomorphic to the
2-fold cover of S3 \N(Dr) branched over J . The latter space can be obtained from
Σ(S3, J) ∼= S3 after removing a tubular neighborhood of the lift of Dr, and so a
description of the lift of Dr and the lift of its longitude will be enough to completely
understand Σ (Dr(K)). With that in mind, consider the untwisted satellite map
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ψ : V → N(D) with pattern Dr−1 and realize Dr ⊆ N(D) as Dr = Dr−1(D) =
ψ(D). Next, related to the identification included as (1), notice that if p :Σ(S3, J) →
S3 is the cover map, then the restriction of p to N(T2,4) = p−1(N(D)) is a cyclic
covering space p : N(T2,4) → N(D), and so basic covering space theory [14, Propo-
sition 1.33] shows that corresponding to the map ψ : V → N(D), and for each choice

of component Ai of T2,4, there exists a homeomorphism ψ̃i : V → N(Ai) satisfying

p◦ψ̃i = ψ. Moreover, ψ̃i carries µV to µAi
, and λV to −2µAi

+λAi
and therefore the

lift of Dr to N (T2,4) is given by ψ̃1(D
r−1)�ψ̃2(D

r−1) = Dr−1
−2 (T2,4), the −2-twisted

r−1 iterated double of the link T2,4. Finally, since each ψ̃i is a twisted satellite map
in its own right, they identify the longitude of Dr−1 with a longitude of its image
Dr−1

−2 (Ai), thus showing that the lifts of a longitude of Dr to N(T2,4) ⊂ Σ(S3, J)

are precisely the longitudes of the components of Dr−1
−2 (T2,4). �

Figure 2. The cover Σ (Dr) → S3 for r = 1, 2, 3.
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3. The 4–dimensional obstruction

Since for every r ≥ 1 the knot Dr is trivial in S3 and has linking number 0 with a
meridional disk of the unknotted solid torus containing it, every iterated untwisted
Whitehead double has trivial Alexander polynomial, and so Freedman’s theorem
[10–12] implies that every iterated untwisted Whitehead double is topologically
slice. As a consequence, classical invariants do not detect information about their
smooth concordance type, and so smooth techniques like gauge theory are necessary
to obtain that information. In this article we will use the internal structure of
the moduli space of anti-self dual connections on a Seifert fibration with three
exceptional fibers to obtain an obstruction to the sliceness of sums of iterated
Whitehead doubles of torus knots. Similar to the way in which Donaldson’s theorem
applies instantons to describe the specific form the intersection form of a closed and
definite 4–manifold takes, the theory of instantons can be applied to manifolds with
boundary (via the addition of cylindrical ends) to obstruct the existence of certain
4–manifolds. This theory was first developed by Furuta [13] and Fintushel and
Stern [9], and extended by Hedden and Kirk [16]. For the technical details we
refer the reader to their articles. The following theorem is a restatement of their
combined results that is free of the technicalities of gauge theory. To establish
notation, given (p, q, s) a set of relatively prime and positive integers, let Σ(p, q, s)
be the Seifert fibered homology sphere with exceptional fibers of orders p, q, s.

Theorem 2. Let pi, qi be relatively prime integers and let ki be a positive integer

for i = 1, . . . , N . If {Σi}
N
i=1

is a family of Seifert fiberd homology 3-spheres such

that Σi = Σ(pi, qi, kipiqi − 1) and satisfying

(2) piqi(kipiqi − 1) < pi+1qi+1(ki+1pi+1qi+1 − 1),

then no linear combination of elements in {Σi}
N
i=1

cobounds a smooth 4–manifold

X with negative definite intersection form and such that H1(X;Z/2) = 0.

The result is obtained after examining the moduli space M of ASD connections
on an SO(3) bundle over a 4–manifold X with boundary a sum of elements of

{Σi}
N
i=1

, and determined by the fibration Σ(pN , qN , kNpNqN − 1) → S2. The
(virtual) dimension of M can be calculated using the Neumann-Zagier formula [21]
and can be shown to be exactly 1 when pN and qN are relatively prime positive
integers, and kN ≥ 1. In addition, M can be shown to be a 1–dimensional manifold,
and so its singularities can be regarded as boundary points. These singularities of
M can be shown to correspond to reducible connections, the number of which can be
computed in terms of the order of the torsion subgroup of H1(X;Z) and the number
of even factors in it. Finally, compactness of M is guaranteed after requiring
1/4 < pi+1qi+1(ki+1pi+1qi+1 − 1) to rule out bubbling, and piqi(kipiqi − 1) <
pi+1qi+1(ki+1pi+1qi+1 − 1) to rule out leaking. If the 4–manifold X were negative
definite and had H1(X;Z/2) = 0, then M would be a compact 1–dimensional space
with an odd number of boundary components, which is a contradiction, and so at
least one of the hypotheses about the topology of X had to be incorrect.

This purely 4–dimensional theorem can be used to obtain an obstruction to
sliceness as follows:

Remark 3 (Slice obstruction). Suppose a certain sum of knots is slice; then the sum
of the double covers bounds a smooth 4–manifold Q with Z/2 homology isomorphic
to the Z/2 homology of B4. However, if the double covers are cobordant to Seifert
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fibered spheres via cobordisms satisfying the hypothesis of Theorem 2, then the
manifold X obtained as the union of Q and the cobordisms would be a negative
definite manifold with b1 = 0. The existence of X contradicts Theorem 2, and so
the original hypothesis of the sliceness of the sums was incorrect.

The next section describes some special constructions of cobordisms from double
covers of iterated doubles to Seifert fibered spaces.

4. Cobordisms

Recall that two oriented 3–manifolds M0 and M1 are said to be cobordant if
there is an oriented smooth 4–manifold W with oriented boundary −M0 �M1. In
this case, we call W a cobordism from M0 to M1, and we call it a negative or
positive definite cobordism if its intersection form is respectively negative definite
or positive definite. Notice that since the covers Σ(Dr(K)) are not Seifert fibered
spaces, the results explained in Section 3 cannot be applied directly to their sums.
However, the 4–dimensional obstruction allows for b2 > 0 as long as the 4–manifold
is negative definite. In this section we will take advantage of this fact and construct
definite cobordisms from the covers to some Seifert fibered spaces. It is worth
mentioning that positive definite cobordisms are necessary if we want to consider
sums of iterated Whitehead doubles that include negative coefficients. In fact,
Donaldson’s theorem and its treatment in [3] show that sums of iterated doubles
with only positive coefficients are never slice.

Lemma 4. Let r > 1. If K admits a series of positive-to-negative crossing changes

that transform it into an unknot, then there exists a negative definite cobordism from

Σ (Dr(K)) to Splice(Dr−1
−2 (U),K).

Proof. By hypothesisK admits a series of positive-to-negative crossing changes that
transform it into an unknot. That is, there exists a sequence of positive-to-negative
crossing changes such that the i-th crossing change is obtained by performing −1
surgery on S3 along a trivial knot γi that lies in E(K), encloses the crossing, and
has linking number 0 with the knot K. Next, consider the description of the double
cover described in Theorem 1, and notice that γi is contained in E(K) and that the
gluing map identifies µK with the longitude of one of the components of Dr−1

−2 (T2,4).
Thus, γi can be regarded as a subset of Σ = Σ(Dr(K)) with framing precisely given
by its framing in S3. Form a 4–manifold Z by attaching 2–handles to I × Σ along
the framed circles γi.

First, notice that the oriented boundary of Z consists of the disjoint union of
−Σ and the result of surgery on Σ along the knots γi with framing number −1.
Denote by Y the latter manifold and notice that as a consequence of Theorem
1, Y can be seen to split as the union of E(K) ∪

ϕ1

(
S3 \N(Dr

−2(T2,4))
)
and the

result of −1–surgery on E(K) along the γi’s. Since the γi’s were chosen to give an
unknotting sequence for K, −1–surgery on E(K) along the γi’s is isomorphic to the
unknot complement and therefore isomorphic to a standard solid torus D2 × S1.
Furthermore, the isomorphism preserves meridian-longitude pairs, and thus the
Seifert longitude of K gets sent to a meridional curve ∂D2 ×{pt.} of D2 ×S1, and
the meridian of K gets sent to the longitudinal curve {pt.} × S1 of the solid torus
D2 × S1. Then, there is an isomorphism

Y ∼=
(
S3 \N(K)

)
∪
ϕ1

(
S3 \N(Dr

−2(T2,4))
)
∪
ϕ′

2

D2 × S1,
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where ϕ′
2 identifies ∂D2 × {pt.} with a longitude of one of the components of

Dr
−2(T2,4). Specifically, if A1, A2 are the components of the link T2,4 and µ2, λ2

are, respectively, a meridian and longitude of Dr
−2(A2), then the gluing map ϕ′

2

satisfies

(ϕ′
2)∗ (

[
S1

]
) = (ϕ2)∗(µK) = λ2 and (ϕ′

2)∗ (
[
∂D2

]
) = (ϕ2)∗(λK) = µ2.

Therefore ϕ′
2 extends to the interior of D2 × S1 and we have

Y ∼=
(
S3 \N(K)

)
∪
ϕ1

(
S3 \N(Dr−1

−2 (A1))
)
,

with

(ϕ1)∗(µK) = λ1 and (ϕ1)∗(λK) = µ1.

This shows that Y is diffeomorphic to Splice(K,Dr−1
−2 (U)).

Next, to see that Z is negative definite, notice that since Σ is a homology sphere,
the second homology group H2(Z;Z) admits a basis determined by the 2–handles,
and the matrix representation of the intersection form of Z in terms of this basis
is given by the linking matrix of the γi’s. It should be clear that if c is the number
of crossing changes in the unknotting sequence for K, this matrix is −Ic, where Ic
is the c× c identity matrix. �

Lemma 5. Let Splice(K0,K1) denote the splice of two knots K0,K1 ⊆ S3. There

exists a negative definite cobordism from Splice(K0,K1) to S3
+1 (K0)#S3

+1 (K1).

Proof. First, consider surgery descriptions for K0 and K1 consisting of a link Li ⊂
S3 (i = 0, 1) whose first component represents Ki and the remaining components
are unknotted circles in S3 with zero linking number with Ki and with framing ±1.
Then Splice(K0,K1) has surgery diagram given by linking the first component
of L0 with the first component of L1 in a way reminiscent of the linking of the
components of the positive Hopf link. See [26, Figure 1.4, p. 9].

Next, unlink the sublinks L0 and L1 to produce the cobordism. Specifically,
consider γ an unknotted curve in S3 that links the first component of each L0 and
L1 exactly once. The formula found in [17, Lemma 1.2] shows that if γ′ is a curve
in the boundary of a tubular neighborhood of γ that represents the homology class
(m, 1), then the linking number of γ and γ′ in Splice(K0,K1) is given by

lk(γ, γ′;Splice(K0,K1)) = lk(γ, γ′;S3)− 2 = m− 2.

This shows that the 4–manifold obtained by attaching a 2–handle to I ×
Splice(K0,K1) along γ with framing m is negative definite as long as m ≤ 1. Thus,
if we choose m = −1, Kirby calculus shows that −1 surgery on Splice(K0,K1)
along γ unlinks L0 and L1 and changes the framing of the first component of each
L0 and L1 from 0 to 1. It is easy to see that Li with this new framing is a surgery
description of S3

+1(Ki). In addition, since L0 and L1 are now unlinked, there is a
separating 2-sphere, and thus −1 surgery on Splice(K0,K1) along γ is diffeomor-
phic to S3

+1 (K0)#S3
+1 (K1). �

Theorem 6. Let K be any knot and let Σ (Dr(K)) be the 2–fold cover of S3

branched over Dr(K). For p, q a pair of integers that are relatively prime and

positive, denote by Tp,q the torus knot determined by p and q. There exist 4–
manifolds Zp,q, Pp,q, and Rp,q such that

(a) Zp,q is a negative definite cobordism from Σ(Dr(Tp,q)) to −Σ(p, q, pq − 1),
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(b) Pp,q is a positive definite cobordism from Σ(Dr(Tp,q)) to −Σ(p, q,
4pq − 1)#− Σ(p, q, 4pq − 1), and

(c) Rp,q is a negative definite manifold with oriented boundary −Σ(Dr(Tp,q)).

Proof. To start, notice that Theorem 6(c) follows immediately from [23, Theorem
5.3(b)]. Similarly, the case r = 1 in Theorem 6(a) follows from [23, Theorem 5.3(a)]
and the fact that −1-surgery on S3

1/2 (Tp,q) along a longitude of Tp,q gives S
3
+1 (Tp,q)

through a negative definite cobordism as in [3, Lemma 2.11].
Next, to obtain Zp,q as in Theorem 6(a), notice that for r>1 Lemmas 4 and 5 give

a negative definite cobordism W from Σ(Dr(Tp,q)) to S3
+1

(
Dr−1

−2 (U)
)
#S3

+1 (Tp,q).

Consider a curve γ in S3 enclosing the crossings in the smallest clasp of Dr−1
−2 (U)

and with linking number zero with the knot Dr−1
−2 (U). Then −1 surgery on S3

along γ unknots Dr−1
−2 (U). Next, since lk(γ,Dr−1

−2 (U);S3) = 0, [17, Lemma 1.2]

shows that the framing number of γ as a knot in S3
+1

(
Dr−1

−2 (U)
)
is also −1 and so

the manifold Zp,q obtained from attaching a 2–handle to W along γ is a negative
definite cobordism from Σ(Dr(Tp,q)) to S3

+1 (Tp,q). A theorem of Moser [19] shows
that S3

+1 (Tp,q) = −Σ(p, q, pq − 1).
Lastly, to obtain the cobordism Pp,q from Theorem 6(b), consider +1-framed

unknotted curves δ1, δ2 in S3 that enclose the smallest clasp in each of the compo-
nents of the link Dr−1

2 (T2,4) with linking number 2 and framing +1. Let D0 be the

restriction to S3 \N(Dr−1
2 (T2,4)) of a spanning disk for δi. Then, since ϕi identifies

the meridian of each component of Dr−1
2 (T2,4) with a longitude of Tp,q, the union

of D0 with two copies of a Seifert surface for Tp,q in E(Tp,q)i is a Seifert surface
for δi in Σ(Dr(Tp,q)), and so the framing number for δi in Σ(Dr(Tp,q)) equals its
framing number in S3. This shows that the 4–manifold obtained by attaching 2–
handles to I × Σ(Dr(Tp,q)) along δ1, δ2 in {1} × Σ(Dr(Tp,q)) is a positive definite
cobordism from Σ(Dr(Tp,q)) to (S3 \ N(U2)) ∪ 2(S3 \ N(Tp,q)), where U2 is the
2-component trivial link with framing −4. This last 3–manifold can be seen to
be S3

1/4(Tp,q)#S3
1/4(Tp,q), and the same theorem of Moser mentioned before ([19])

shows that S3
1/4(Tp,q) = −Σ(p, q, 4pq − 1). �

Notice that Theorem 6(a) also exists for any knot K that admits a series of
positive-to-negative crossing changes that transform it into a torus knot Tp,q with
p, q > 0 and that Theorem 6(c) exists for any knot K.

Lemma 7 (Lemma 2.10 from [3]). If J admits a series of positive-to-negative

crossing changes that transform it into K, then for any rational number q there

exists a negative definite cobordism from S3
q (J) to S3

q (K).

Proof. Since J admits a series of positive-to-negative crossing changes that trans-
form it into K, there exists a link L ⊆ S3 \ N(J) with linking number 0 with J
and such that each component of L encloses one of the crossings of J that will be
changed. Also, each component of L has framing −1. Then, the 4–manifold W ob-
tained by attaching 2–handles to I×S3 along the framed link L is negative definite,
and the annulus A equal to the inclusion I×J → I×S3 regarded as a submanifold
of W restricts to J and K at each end of W and has trivial normal bundle in W .
Denote by Wq(A) the manifold obtained by removing A×D2 from W and replacing
it with I×S1×D2 using a homeomorphism which is a product on the I factor and
restricts on ∂I to the q surgeries on ∂W . Then H2(Wq(A)) ∼= H2(W \A) ∼= H2(W ),
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and hence both 4–manifolds have equivalent intersection forms. Thus Wq(A) is a
negative definite cobordism from S3

q (J) to S3
q (K). �

5. Independence

This section is the culmination of all the work. Here we mix all the ingredients
that we developed in the previous sections to finally obtain the main result as a
corollary to the following 3–dimensional theorem.

Theorem 8. Let {(pi, qi)}i be a sequence of relatively prime positive integers and

let ri be a positive integer for every i. If

piqi (4piqi − 1) < pi+1qi+1 (pi+1qi+1 − 1) ,

then the family F = {Σ (Dri (Tpi,qi))}
∞

i=1
is independent in Θ3

Z/2.

Proof. Denote by [Y ] the homology cobordism class of the Z/2–homology sphere
Y and suppose by contradiction that there exist integral coefficients c1, . . . , cN ∈ Z

such that
N∑

i=1

ci [Σ (Dri (Ki))] = 0

in Θ3
Z/2. The supposition implies the existence of an oriented 4–manifold Q with

the Z/2 homology of a punctured 4–ball and with boundary

∂Q =
N

#
i=1

(
ci
#
j=1

Σ (Dri (Ki))

)
.

Attaching 3–handles to Q we can further assume that

∂Q =

N⊔

i=1

ciΣ (Dri (Ki)) .

Here we use cY to denote the disjoint union of c copies of Y if c > 0 and −c copies
of −Y if c < 0. In addition, and without loss of generality, further assume that
cN ≥ 1. Augment Q using the cobordisms constructed in Theorem 6, namely, let

X = Q ∪

(
ZpN ,qN

)
∪

(
⊔

ci>0

Rpi,qi

)
∪

(
⊔

ci<0

−Ppi,qi

)
.

Thus, X is a negative definite 4–manifold with oriented boundary

∂X = −Σ(pN , qN , pNqN − 1) �

(
⊔

ci<0

Σ(pi, qi, 4piqi − 1)

)
.

Additionally, since the first Z/2–homology groups of ZpN ,qN , −Ppi,qi , Rpi,qi , and Q
are trivial, the Mayer-Vietoris theorem shows that H1(X,Z/2) = 0. This would im-
ply that the Seifert fibered spaces−Σ(pN , qN , pNqN−1)�

(⊔
ci<0

Σ(pi, qi, 4piqi − 1)
)

cobound a smooth 4–manifold that has negative definite intersection form and that
satisfies H1(X,Z/2) = 0, contradicting Theorem 2. Therefore, Q cannot exist, and
so the 3–manifolds Σ (Dri (Ki)) are independent in the Z/2 homology cobordism
group. �
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To summarize, to show that a sum #N
i=1ciYi of Z/2 of homology spheres does not

bound a putative Z/2 homology ball Q, attach negative definite cobordisms either
to cap off Q or to simplify its boundary. Then use gauge theoretical techniques
to rule out the existence of the 4–manifold obtained and thus of the putative ball
itself. Ideally, one would obtain a closed 4–manifold and then apply Donaldson’s
theorem since that would give the strongest possible result. In the case under con-
sideration, sums with only positive coefficients pose no problems since double covers
of Whitehead doubles bound negative definite manifolds and so can be capped-off.
However, sums that involve positive coefficients pose a problem. Indeed, if we use
the positive cobordism from Section 4, we end up with Seifert fibered spheres that
are known not to bound a negative definite 4–manifold. Similarly, if we use the
positive definite cobordism P from −Σ(Dr(Tp,q)) to 2S3

1/4(D
r−1(Tp,q) described in

[23], we end up with 3–manifolds that Hedden [15] shows do not bound a negative
definite smooth 4–manifold since τ (Tp,q) > 0. Also, the cobordisms constructed
in Section 4 do not keep track of the index of the iteration, and so our technique
cannot be used to prove independence of, for example, the family {Dr(T2,3)}r≥1.
Regardless, the following corollary provides a condition under which a family of
iterated doubles of positive torus knots is independent. The corollary follows from
Theorem 8 in the way outlined in Theorem 3.

Corollary 9. Let {(pi, qi)}i be a sequence of relatively prime positive integers, and

let ri be a positive integer (i = 1, 2, . . .). If piqi (4piqi − 1)<pi+1qi+1 (pi+1qi+1 − 1),
then the family {Dri (Tpi,qi)}

∞

i=1
is independent in C.
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